TY - BOOK AU - Kaikang Chen TI - Numerical simulation and study on heat and mass transfer in a hybrid ultrasound/convective dryer KW - Deep-bed drying KW - Ultrasonic power KW - Partial differential equation KW - Boundary layer KW - Moisture diffusivity KW - Heat transfer coefficient N2 - Susceptibility of airborne ultrasonic power to augment heat and mass transfer during hot air dehydration of peppermint leaves was investigated in the present study. To predict the moisture removal curves, a unique non-equilibrium mathematical model was developed. For the samples dried at temperatures of 40‒70 °C and the power intensities of 0‒104 kW m−3, the diffusion of moisture inside the leaves and coefficients for of mass and heat transfer varied from 0.601 × 10–4 to 5.937 × 10–4 s−1, 4.693 × 10–4 to 7.975 × 10–4 m s−1 and 49.2 to 78.1 W m−2 K−1, respectively. In general, at the process temperatures up to 60 °C, all the studied transfer parameters were augmented in the presence of ultrasonic power ER -